Navy Fire & Emergency Services Project Spring 2012

Saiful Hannan Adam Mosquera Craig Vossler

> Sponsored by Fred Woodaman Innovative Decisions Inc

Where Innovation Is Tradition

Agenda

- Introduction and Background
- Objectives and Bottom Line
- Fire Science
- Technical Approach
- Evaluation
- Future Development
- Acknowledgements
- Questions

Introduction & Background

- The US Navy would like a tool developed to simulate Fire & Emergency events within its worldwide installations
- Fall 2011 capstone developed Excel-based "FESEBLE"
 - But the loss sustained due to a scenario was not quantified
 - Loss due to an event was binary (all or none)

Objectives

- Accurately model the behavior of the fire and expected loss given varying response parameters
- Provide a capability for this model to simulate expected loss at a customer installation

Bottom Line

- Created a novel loss function along with a working model and accompanying simulation capability
- It allows for quantitative comparison of expected losses with respect to management metrics.
- These metrics can in turn be tied to resource allocation
- Scope
 - Single family residence fires only
 - Measures fractional asset "loss" without regard to specifying property or dollars

Fire Science

- When left unchecked, fire loss generally starts slowly, then accelerates, and then decelerates once the fuel begins to be exhausted.
- Research shows the most important factors in loss mitigation are the staffing levels and response times of the first two engine companies that arrive at the scene

Data Compiled NIST Technical Note 1661, April 2010

GEORGE

Graphic taken from http://iaff266.com/flashover

Technical Approach – Characterizing Loss

- The total loss over time has a similar shape to CDFs particularly the highly adaptable Weibull CDF.
- And since the derivative of a CDF is a PDF, the Weibull PDF can characterize the rate of loss over time.

Technical Approach – Loss Mitigation

Loss Mitigation Assumptions:

-Mitigation starts when water is applied -1st engine crew alone can apply water for a limited time until tank empties -2 minutes (4 minutes if undermanned) after response time required to start hose -2nd engine crew connects the hydrant to the 1st engine, removing water limitations

Response times and crew staffing levels control degree of loss mitigation

Tech Approach – Fire Spread & Variability

Technical Approach – Baseline Fire Types

	🕱 🖳 🔊 🛛 🖓 🖛 🔯 🖓 🖉										×													
File Home Insert Page Layout Formulas Data Review View Developer																								
	🖁 🔏 Cut		Calibri	* 11	- A .	= = _	\$2.v	Wrap	Text	General				Normal	Mo I	Percent 2	Normal	-		× ====	Σ AutoSu	m • A	A	
Pad	📙 🝙 Cop	y -	D 7 11		A . A .	= = =			R. Castan	¢ _ 0/ •	€.0 .00	Conditional	Eormat	Pad		Rood	Noutral	-	Insert Del	ete Format	🛃 Fill 🔻	Sort &	Find &	
	🏹 🍼 For	mat Painter	<u>ю т о</u>		X · A ·		16 16	mag Merge	a Center *	\$ * 70 \$.000	Formatting *	as Table	Dau		000	Neutral	Ŧ	* *	· · ·	🖉 Clear 🔻	Filter *	Select *	
	Clipboard	d G		Font	5		Alignme	ent	Ta	Number	Tai				Styles				Ce	ells		Editing		
	G5		. ($f_x = 1$						1	1									1	1 1			¥
	A	В	C	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	
1	Fire throu	gn whole i	nouse - ma	x loss 100%		Weibell D			Fire - Part	Ial loss	1	Time		Mar de cell	D									
2	0.001	Loss rate	LOSS	1 c 1 001	-	weibuli Pa	rameters		0.001	Loss rate	LOSS	Time		weibuli	Paramete	rs	1 202525 25		A CCT 00	1				
3	0.001	2.121/16	-12 5.89E	-16 1.001	.5	aipna	3.0		0.001	1.74855E-12	8.04E-10	b 1.0015		aipna	3.62384	14	1.39253E-25		4.66E-05	,				
4	0.1	3.36269E	-07 9.34E	-09 1.1	.5	beta	1/		0.1	3.0929E-07	1.42E-08	8 1.15		beta	14.634	16	7.27867E-16							
5	0.2	2.03875E	-06 1.13E	-07 1.	.3	scale	1		0.2	1.90643E-06	1.75E-0.	/ 1.3		scale	0	.0	1.75087E-14							
6	0.3	5.85061E	-06 4.88E	-0/ 1.4	5				0.3	5.52404E-06	7.62E-0.	/ 1.45				-	1.0665E-13							
/	0.4	1.2360/E	-05 1.37E	-06 1.	.6	m	1.5		0.4	1.1/51E-05	2.16E-00	6 1.6		m	_ 1	.5	3./1648E-13							
8	0.5	2.20804E	-05 3.07E	-06 1.7	5	D	1		0.5	2.11034E-05	4.85E-00	b 1.75		D		1	9.54612E-13							
9	0.6	3.54/13E	-05 5.91E	-06 1.	.9				0.6	3.40494E-05	9.4E-00	b 1.9					2.0219E-12							
10	0.0	9										2.05	Usi	ng the para	meters for	ra fire that	engulfs the entire	e house,						
11												2.2	we	can calculat	te the para	ameters for	a self-contained	version	of					
12	0.0	3										2.35	the	same fire.										
13												2.5	Civ	on the nara	motors of	the 'parent	fire and the low	olof						
14	0.0	7				/						- 2.65	GIV	Given the parameters of the parent fire, and the revel of										
15						/						2.8	suc	such that the fire loss rate of the first 10 minutes are the same										
16	0.0				/	\sim						2.95	ast	as the 'parent'.										
17						$\langle \rangle$						3.1												
18	. E 0.0.	·										3.25				-								
19	800	1										3.4					6.3152E-11							
20	-											3.55					7.33374E-11							
21	0.0	3										3.7					8.33522E-11							
22												3.85					9.28238E-11							
23	0.0	2		_/					\rightarrow			4					1.01367E-10							
24												4.15					1.08602E-10							
25	0.0	1		/								4.3					1.1417E-10							
26												4.45					1.17757E-10							
27)		61-62	12.53	1070122	510	101217				- 4.6					1.19106E-10							
28		0	5	10	15	20	25	30	35	40 4	45	50 4.75					1.18041E-10							
29						Mi	nutes					4.9					1.14482E-10							
30	0 5.0'											5.05					1.08455E-10							
31 2.8 0.001943747 0.001513 5.2 2.8 0.001933742 0.002493 5.2												1.00105E-10												
32 2.9 0.002128997 0.001716 5.35 8.97049E-11																								
14 4	► H S	imulation Sc	enarios /	MCSim4 / m	nodel Sca	ling fire para	neter sol	/er / 🔁 /									1							
Read	dy 🔛	Y -			Y	Y						_	_	_				_	_			J0% ()	V	(+
	🕞 🚞 🥹 🖸 💫 🧭 📜 🔣																							

Technical Approach – Fire Spread Parameters

X 🚽 🔊 • (° • 🛕] 🚽 🤊 • 🔍 • 🛕 ≠ Copy of fire loss model with simulation 2 - Microsoft Excel															
File Home	File Home Insert Page Layout Formulas Data Review View Developer 🗠 💡 🗆 📾 🖄															
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$			p Text General je & Center * \$ * 9 G N	v to the second	ial Format g * as Table *		Normal 3 Percent 2	Normal_Auto * Normal *		Insert Delete Format		Σ AutoSu Fill ▼ Clear ▼	M * 27 M Sort & Find & Filter * Select Editing	k *		
N48 \bullet f_x												~				
Α	В	С	D	E	F G	Н	1	J	K	L	М	N	0	Р	Q R	E
1																A
2	Simulation parameters				Fire Origination	Final Spread Limited to:	Probability	Prob Bins	Damage/Scale	alpha	beta				Probab	ility Giv 🗏
3	0.341				Ground Level	Original Room	0.105	0	0.2	4.18	9.69				0	15
4	Damage / Scale	alpha	beta		Ground Level	2 rooms on same floor	0.08925	0.105	0.4	4.07	11.74				0.12	75
5	0.8	4.01	14.14		Ground Level	3 rooms on same floor	0.10115	0.19425	0.6	4.03	13.10				0.14	45
6				· · · · · ·	Ground Level	1 Room in Other Floor	0.06069	0.2954	0.8	4.01	14.14				0.08	67
7					Ground Level	Whole House	0.34391	0.35609	1	4.00	15.00				0.49	13
8 %Prob Fire Starti	ing at Ground Level (1-P fo	r Uppel Lev	rel)	0.7	Upper Level	Original Room	0.045	0.7	0.2	3.75	10.49				0	15
9					Upper Level	2 rooms on same floor	0.03825	0.745	0.4	3.65	12.97				0.12	75
10 Ground Level					Upper Level	3 rooms on same floor	0.0867	0.78325	0.6	3.62	14.63				0.2	89
11 % Prob Spread Room to Room 0.85				Upper Level	1 Room in Other Floor	0.0195075	0.86995	0.8	3.61	15.93				0.0650	25	
12 % Prob Spread from floor to floor (after adjacent rooms ignited) 0.8				Upper Level	Whole House	0.1105425	0.8894575	1	3.60	17.00				0.3684	/5	
13																
14 Upper Level				0.05							-					_
15 % Prob Spread R	oom to koom som floor to floor (ofter ad	incont room	ac ignited)	0.85		Loss Rat	tes for Fi	ires Origiu	nating		25					
16 % Prob Spread fr	om floor to floor (after ad	acent roon	ns ignited)	0.0												_
17 18 - Determined 19 the whole ho 20 parameters: a 21 house: a=3.6, 23 - Even though 24 'scaling fire p. 25 - 26 - Probably of 27 that can be ac 28 determined fi 29 - 30 -The probabil 31 to determine 32 Paradom der Ready -	the general shape for fire use can be modeled by the a= 4, b=15; Fire that origin: b=17. If fires may originate in a sir iffing the whole house. Par arameter solver' sheet. fire spreading from room t djusted to reflect the natur rom a study findings from (lity of fire origination location the probability of each fire must from the fire origination n Scenarios / MCSim4 / m	that origina same funct ate upstairs milar manne ameters fo o room and e of the bui Columbia U ion and prol e scenario.	ites downstain tion as the We and engulfs t er, several are r these fires an floor to floor Iding. Initial niversity (to b babilities of sp	ers and engulfs sibull PDF with the whole ersolved in the are variables values e referenced). pread are used eter solver	0.12 0.1 0.08 9 0.06 0.04 0.02 0 0	Dov	vnstairs 20	& Upstai	rs	40 45] 4				00%	×
			P													0:25 PM

Technical Approach – Model Prototype

X 🖵	Presentation Altered fire loss model with simulation 2 - Microsoft Excel																									
File	Home In:	ert Page Layout	Formulas	Data	Review	View Developer															۵ 🕜 🗆	a 🗗 🔀				
Paste	ocut Cut Copy ▼	Calibri	• 11 • A	≡ =	= _ *	Wrap Text	General	• Cond	litional	Format	Normal_Mo.	Perce	nt 2	Normal	•			Format	Σ AutoSu ↓ Fill ▼	n * Ž	Find &					
Ŧ	I Format Painter	D I <u>D</u>	<u> </u>			- == merge & center		→.0 Forma	atting * a	as Table *	buu	0000		Neutral	Ŧ	*	*	*	Clear *	Filter *	Select *					
	lipboard 5	Fon	it	Fai	A	lignment	Number	Eg.				Styles					Cells			Editing		-				
	F52	▼ (*				
	Α	В	С	D	E	F	G	H	ł		J	K	L	М	N	1	0		p i	ם	R	S 🔺				
1 Fire	e Loss Model									_																
2	1 1 5				Total Los	s Due to Fire					Aodeling Unmi	tigated Fire	Loss: Th	e alpha and be	ta are dra	wn from	a gam	ma				=				
3 We	eibuli Parameters	alaba	hata		0.0085					C	istributions wit	th k_alpha	= a / 0.02,	theta_alpha=	0.02, k_b	eta = b /	0.15,									
4	scale	aipna 4 51	11 50		8				_	t	heta_beta=0.1	5. The scale	e, a, and b	are from the	'simulatio	n scenari	os' she	eet.								
6	0.2	4.51	11.35			Loss	late				a controlled setting from the NIST study (to be referenced). The 'start' of the fire is															
7				0.025				gated Loss R	ate	a	lso normally di	stributed w	ith the st	andard deviati	d deviation of 0.7 minutes. This was done											
8 Sce	enario Assumption	s		0.055			Mitigat	ted Loss Rate	2	t	to characterize the varying times for the controlled fires to reach minimal spread															
9 Tru	ick 1 Arrives (time)	7.63	0.03		\land				t	temperature (100 deg celsius) also referenced in the NIST study.															
10 Tru	ick 2 Arrives (time)	12.97	0.025																						
11				0.02	0.02						defined average arrival times and standard deviations. 2 minutes after 1st engine arrival required for full crew (4 person) to start fighting fire; 4 minutes for partial crew (3 person).															
12 1st	Truck Performan	ce		0.015	0.015																					
13 # P	eople (3 or 4)		4	0.01	0.01																					
14 3 p	eople penalty (tin	ie)	2	0.005																						
15				0.005							Once the water is applied to the fire, fire loss rate decreases at a constant rate. 1st															
16 fire	loss mitigation ra	ite	0.005							e	engine can provide 6 minutes of Water Without being hooked to a hydrant. The primary role of the second engine crew is to book the first engine to the hydrant															
17 ma	x time 1 truck figh	nt fire alone	6	- · ·		10 20 Mir	utes	40		- F	which can be d	one about :	2 minutes	after 2nd eng	ine arriva	l). If the f	ire los	s rate is								
18											ot brought dov	vn to 0 witl	hin 6 minu	ites of applying	g water, a	nd the se	cond (engine								
19 20 Tru	ick 1 roady with h		0.62	Total Loss Due to Fire						— h	has not hooked the fire hydrant, fire loss rate remains constant until water supply															
20 mu	3 nerson nenalty	use	9.63								can be restored.															
21 W/	ick 2 ready to sup	ort hose	14.97							-1 ,	Total loss is the integral of the mitigated loss rate															
23	ion 2 ready to sup	ore nose	21157	0.9	0.8 - Mitigated Total Loss						Using McSim add-in to run Monte Carlo simulation. (2000 iterations; using RAND; keep track of cell \$E\$3; solve entire workbook)															
24 Pro	bability of 3-perso	on crews	0.5	0.7						l																
25 Avg	g response time 1	st engine	8	0.6	0.6																					
26 Avg	g response time 2	nd engine	12	0.5	0.5																					
27				0.4																						
28 Rai	ndom process - tru	ıck arrival	7.63	0.2																						
29 Rai	ndom process - tru	ick arrival	12.97	0.1																						
30						10 20	20	40																		
31	al. 15			0		10 20	3U	40																		
32 Tin	ne Shift	1.39		_		IVI	nuces																			
33 IIN 24	ie scale	1.5		·						-												-				
4 € ▶	Simulation Scenarios / MCSim4 model / Scaling fire parameter solver / 🕼 /																									
Ready	2																		Ⅲ □ Ⅲ 9	5% 🗩						
8)	P	1															*	⊳ ().	12:11 4/23/	L PM /2012				

Technical Approach – Simulation

Evaluation – How to Use Tool

Evaluation – Model Assumptions

Fire loss rate at any given time is approximated by the temperature and amount of energy released at that moment Weibull function shape is sufficient to approximate temperature behaviors for accurate extraction of quantitative losses

Evaluation – Model Assumptions

• Varying Weibull parameters via a Gamma Distribution produces a representative sample of loss rate curves

 Reduction of the fire loss rate by responders occurs linearly and responders are assumed to be fully trained and competent

• Fraction of loss incurred is then equal to the area under the loss rate curve

Evaluation – Analysis of Results

- A simulation using this model can be used for reliable, quantitative comparisons of expected structure loss across different resource availability levels
 - Fire behavior is modeled accurately based on previous studies and discussions with SMEs
 - Fire response and mitigation is based on researched policies, tactics, and performance levels

Evaluation – Analysis of Results

• The magnitude of the difference in expected loss can vary significantly through adjustments to customizable parameters

Sur	nmary Stati	stics	Notes
Average	0.171		1st Engine Resp. Time: 10 min
SD	0.1710		2nd Engine Resp. Time: 15 min
Max	1.000		% Small Crews: 40%
Min	0.001		

Histogram of Expected Loss

Recommendations

- Refinement of fire ignition point and type of spread data percentages
- Analyze available data within Department of Defense Fire Incident Reporting System (DFIRS) as to fire types and frequency differences from national data to adjust probability segments within Naval installations.
- Suggested additions to this model
 - Additional building types (offices, apartment buildings)
 - Affects of built in fire mitigation devices
 - Additional scenarios and effects of simultaneous incidents

Future Development

- Develop and examine the impact of loss of life or injury on model recommendations
- Assign future GMU project teams to develop new functionalities desired by Navy F&ES and the sponsor
- Integrate these efforts into a single tool to produce the desired comprehensive analysis.

Acknowledgements

- Dr. Kathryn Laskey—Project Advisor
- Mr. Fred Woodaman—Project Sponsor
- Mr. Dan Hunt—Prince George County volunteer and Federal Firefighter
- Mr. Patrick Cantwell– Systems Engineering Doctoral Candidate George Washington and Stafford County, VA volunteer firefighter

